职称:讲师
学位:博士
研究领域:结构健康监测;桥梁智慧运维、计算机视觉、深度学习
办公地点: 抗震大楼1区605室
电子邮箱:gao.fan@gzhu.edu.cn
个人简介
必赢贵宾会3003am工程抗震研究中心特聘讲师,硕士研究生导师。2020年博士毕业于澳大利亚科廷大学。主要从事结构健康监测大数据深度学习和桥梁智慧运维方向的研究,相关成果以第一或通讯作者发表高水平SCI论文十余篇,谷歌学术总引用400余次。主持国家自然科学基金青年科学基金一项,广州市基础与应用基础研究一项。指导学生获第二届结构健康监测国际竞赛(IC-SHM, 2021)荣誉奖、第三届结构健康监测国际竞赛(IC-SHM, 2022)二等奖。欢迎各位热爱学术,对前沿科学感兴趣的同学加入。
教育背景
2012.2 - 2016.1 澳大利亚科廷大学 土木与建筑工程 学士
2016.11 - 2020.9 澳大利亚科廷大学 土木工程 博士
职业经历
2020.11 – 2023.4 必赢贵宾会3003am 讲师
2023.4 – 至今 必赢贵宾会3003am工程抗震研究中心 讲师
教授课程
画法几何与工程制图、工程技术经济、建筑结构试验与检测、土木工程专业英语、土木工程发展前沿与系列讲座。
科研服务
[1] 2021年度必赢贵宾会3003am人才培育项目(主持)
[2] 2022年度广州市基础研究计划基础与应用基础研究项目:基于生成对抗网络响应重构技术的非监督结构损伤识别研究(主持)
[3] 2022年国家自然科学基金青年科学基金项目:数据驱动下基于深度学习的结构健康监测响应重构和结构损伤识别研究(主持)
研究成果
近期发表的期刊文章
[1] Qiqi Zeng, Gao Fan*, Dayang Wang*, Weijun Tao, Airong Liu. A systematic approach to pixel-level crack detection and localization with a feature fusion attention network and 3D reconstruction. Engineering Structures. 2024. 300: 117219 (SCI收录,JCR Q1,IF=5.5).
[2] Shihong Chen, Gao Fan*, Jun Li*. Improving completeness and accuracy of 3D point clouds by using deep learning for applications of digital twins to civil structures. Advanced Engineering Informatics. 2023. 58: 102196 (SCI收录,JCR Q1,IF=5.582).
[3] Gao Fan, Zhengyan He, Jun Li*. Structural dynamic response reconstruction using self-attention enhanced generative adversarial networks. Engineering Structures. 2023. 276: 115334 (SCI收录,JCR Q1,IF=5.582).
[4] Jun Li, Wupeng Chen, Gao Fan*. Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks. Smart Structures and Systems, 2022, 30(6): 613-626 (SCI收录,JCR Q1,IF= 4.581).
[5] Jun Li, Zhengyan He, Gao Fan*. Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning, Smart Structures And Systems, 2022, 30(6): 687-701 (SCI收录,JCR Q1,IF= 4.581).
[6] Gao Fan, Jun Li*, Hong Hao, Yu Xin. Data driven structural dynamic response reconstruction using segment based generative adversarial networks, Engineering Structures, 2021, 234: 111970 (SCI收录,JCR Q1,IF= 4.471).
[7] Gao Fan, Jun Li*, Hong Hao. Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks. Structural Health Monitoring. 2021. 20(4): 1373-1391. (SCI收录,JCR Q1,IF=5.929).
[8] Gao Fan, Jun Li, Hong Hao*. Vibration signal denoising for structural health monitoring by residual convolutional neural networks. Measurement. 2020. 157: 107651 (SCI收录,JCR Q1,IF= 3.927).
[9] Gao Fan, Jun Li*, Hong Hao. Lost data recovery for structural health monitoring based on convolutional neural networks. Structural Control and Health Monitoring. 2019. 26(10): e2433 (SCI收录,JCR Q1,IF= 4.819).
[10] Gao Fan, Jun Li*; Hong Hao. Improved automated operational modal identification of structures based on clustering, Structural Control and Health Monitoring. 2019. 26(12): e2450 (SCI收录,JCR Q1,IF= 4.819).
[11] Jun Li*, Hong Hao, Gao Fan, et al. Numerical and experimental verifications on damping identification with model updating and vibration monitoring data. Smart Structures and Systems. 2017. 20(2): 127-137 (SCI收录,JCR Q2,IF=3.557).